Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Vaccines (Basel) ; 10(12)2022 Dec 14.
Article in English | MEDLINE | ID: covidwho-2163723

ABSTRACT

Since the SARS-CoV-2 outbreak, pharmaceutical companies and researchers worldwide have worked hard to develop vaccines and drugs to end the SARS-CoV-2 pandemic. The potential pathogen responsible for Coronavirus Disease 2019 (COVID-19), SARS-CoV-2, belongs to a novel lineage of beta coronaviruses in the subgenus arbovirus. Antiviral drugs, convalescent plasma, monoclonal antibodies, and vaccines are effective treatments for SARS-CoV-2 and are beneficial in preventing infection. Numerous studies have already been conducted using the genome sequence of SARS-CoV-2 in comparison with that of other SARS-like viruses, and numerous treatments/prevention measures are currently undergoing or have already undergone clinical trials. We summarize these studies in depth in the hopes of highlighting some key details that will help us to better understand the viral origin, epidemiology, and treatments of the virus.

2.
Front Genet ; 12: 819493, 2021.
Article in English | MEDLINE | ID: covidwho-1674328

ABSTRACT

The masked palm civet (Paguma larvata) is a small carnivore with distinct biological characteristics, that likes an omnivorous diet and also serves as a vector of pathogens. Although this species is not an endangered animal, its population is reportedly declining. Since the severe acute respiratory syndrome (SARS) epidemic in 2003, the public has been particularly concerned about this species. Here, we present the first genome of the P. larvata, comprising 22 chromosomes assembled using single-tube long fragment read (stLFR) and Hi-C technologies. The genome length is 2.41 Gb with a scaffold N50 of 105.6 Mb. We identified the 107.13 Mb X chromosome and one 1.34 Mb Y-linked scaffold and validated them by resequencing 45 P. larvata individuals. We predicted 18,340 protein-coding genes, among which 18,333 genes were functionally annotated. Interestingly, several biological pathways related to immune defenses were found to be significantly expanded. Also, more than 40% of the enriched pathways on the positively selected genes (PSGs) were identified to be closely related to immunity and survival. These enriched gene families were inferred to be essential for the P. larvata for defense against the pathogens. However, we did not find a direct genomic basis for its adaptation to omnivorous diet despite multiple attempts of comparative genomic analysis. In addition, we evaluated the susceptibility of the P. larvata to the SARS-CoV-2 by screening the RNA expression of the ACE2 and TMPRSS2/TMPRSS4 genes in 16 organs. Finally, we explored the genome-wide heterozygosity and compared it with other animals to evaluate the population status of this species. Taken together, this chromosome-scale genome of the P. larvata provides a necessary resource and insights for understanding the genetic basis of its biological characteristics, evolution, and disease transmission control.

3.
Animals (Basel) ; 11(6)2021 Jun 07.
Article in English | MEDLINE | ID: covidwho-1286925

ABSTRACT

Spontaneous mutations are a common characteristic of the foot and mouth disease virus (FMDV), leading to wide antigenic variations resulting in the emergence of new topotypes and lineages of FMDV, which contributes to occasional vaccination failures. The objectives of the present study were to genetically characterize FMDV isolated from water buffaloes and study the biochemical and histopathological indicators of infected animals. Fifty-four water buffaloes of both sexes and different ages suffered from acute symptoms of FMD were clinically examined and randomly selected for inclusion in this study. Oral desquamated epithelial and oropharyngeal fluid samples have been tested for FMDV by reverse transcriptase PCR (RT-PCR). Tissue and serum samples were also collected from the diseased buffaloes and subjected to histopathological and biochemical analysis. Our findings showed that all examined samples were confirmed to be positive to FMDV serotype SAT-2 and were adjusted to be responsible for the recent disease outbreak in this study. Phylogenetic analysis revealed that the circulating viruses were of the SAT-2 serotype, closely related to the lineage of lib12, topotype VII, with 98.9% identity. The new lineage of SAT-2 showed a high virulence resulting in the deaths of water buffaloes due to heart failure, confirmed by high serum levels of inflammatory and cardiac markers, including haptoglobin, ceruloplasmin, cardiac troponin I and creatine phosphokinase-MB, indicating an unfavorable FMD-infection prognosis. In conclusion, we document the presence of new incursions circulating in water buffalo populations in Egypt in early 2019, explaining the high morbidity rate of FMD outbreak in early 2019. Furthermore, the newly identified serotype SAT-2 lib12 lineage, topotype VII, showed an aggressive pattern in water buffaloes of the smallholder production system.

SELECTION OF CITATIONS
SEARCH DETAIL